.
Productos notables es el nombre que reciben aquellas multiplicaciones con expresiones algebraicas cuyo resultado puede ser escrito sin necesidad de efectuar la operación.
Veamos entonces el primer Producto Notable
.
Cuadrado de un Binomio En el cuadrado de uin Binomio tenemos dos casos: Cuadrado de una Suma y Cuadrado de una Diferencia.
Cuadrado de una Suma . Veamos que la manera de realizar éste producto notable es completamente sencilla; lo único que tienes que hacer es seguir la fórmula:
(a+b)2 = a2 + 2ab + b2
Interpretándo la fórmula tenemos que el Cuadrado de una Suma es igual a:
- al Cuadrado del primer término,
- más el doble producto del primero por el segundo
- más el cuadrado del segundo término
1 ( X + 3 )2 Encontramos primero los términos:
Cuadrado del Primero X2el doble producto del primero por el segundo, 2 ( x) ( 3) = 6x
el cuadrado del segundo término 32 = 9
Aplicando la fórmula tendríamos
( X + 3 )2 = X2 + 6x + 9
Cuadrado de una Diferencia Trabajar con el cuadrado de una diferencia es similar al cuadrado de una suma con la única diferencia de que el signo del segundo término va a ser menos; veamos ahora la fórmula
(a-b)2 = a2 - 2ab + b2
Interpretándo la fórmula
Cuadrado de una Diferencia es igual
al Cuadrado del primer término,
menos el doble producto del primero por el segundo,
más el cuadrado del segundo término
Ejemplo: Trabajaremos con el mismo ejemplo anterior ; para que veas la similitud
( X - 3 )2 Encontramos primero los términos:
Cuadrado del Primero X2
el doble producto del primero por el segundo, 2 ( x) ( 3) = 6x
el cuadrado del segundo término 32 = 9
Aplicando la fórmula ; tendríamos ( X - 3 )2= X2- 6x + 9
Veamos ahora otro producto Notable
LA SUMA POR LA DIFERENCIA DE DOS TÉRMINOS
Éste producto Notable lo hemos visto anteriormente en clase cuando trabajamos números reales; pero vamos a recordarlo; tenemos la fórmula
( a + b) ( a - b) = a2 - b2
Interpretándo la fórmulaEl Producto de la Suma por la Diferencia de dos términos es igual a la diferencia de sus cuadrados.
Ejemplo:
( 5x + 2) ( 5x - 2) = ( 5x)2 - 22= 25x2 - 4
ingresa a éste link y encontrarás la nota técnica con los ejercicios a desarrollar
https://sites.google.com/site/hiljimar1miforo/my-forms
y ahora como siempre verás el video